skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wan, Ziwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Connected Vehicle (CV) technologies are under rapid deployment across the globe and will soon reshape our transportation systems, bringing benefits to mobility, safety, environment, etc. Meanwhile, such technologies also attract attention from cyberattacks. Recent work shows that CV-based Intelligent Traffic Signal Control Systems are vulnerable to data spoofing attacks, which can cause severe congestion effects in intersections. In this work, we explore a general detection strategy for infrastructure-side CV applications by estimating the trustworthiness of CVs based on readily-available infrastructureside sensors. We implement our detector for the CV-based traffic signal control and evaluate it against two representative congestion attacks. Our evaluation in the industrial-grade traffic simulator shows that the detector can detect attacks with at least 95% true positive rates while keeping false positive rate below 7% and is robust to sensor noises. 
    more » « less
  2. Vehicles controlled by autonomous driving software (ADS) are expected to bring many social and economic benefits, but at the current stage not being broadly used due to concerns with regard to their safety. Virtual tests, where autonomous vehicles are tested in software simulation, are common practices because they are more efficient and safer compared to field operational tests. Specifically, search-based approaches are used to find particularly critical situations. These approaches provide an opportunity to automatically generate tests; however, systematically producing bug-revealing tests for ADS remains a major challenge. To address this challenge, we introduce DoppelTest, a test generation approach for ADSes that utilizes a genetic algorithm to discover bug-revealing violations by generating scenarios with multiple autonomous vehicles that account for traffic control (e.g., traffic signals and stop signs). Our extensive evaluation shows that DoppelTest can efficiently discover 123 bug-revealing violations for a production-grade ADS (Baidu Apollo) which we then classify into 8 unique bug categories. 
    more » « less
  3. In high-level Autonomous Driving (AD) systems, behavioral planning is in charge of making high-level driving decisions such as cruising and stopping, and thus highly securitycritical. In this work, we perform the first systematic study of semantic security vulnerabilities specific to overly-conservative AD behavioral planning behaviors, i.e., those that can cause failed or significantly-degraded mission performance, which can be critical for AD services such as robo-taxi/delivery. We call them semantic Denial-of-Service (DoS) vulnerabilities, which we envision to be most generally exposed in practical AD systems due to the tendency for conservativeness to avoid safety incidents. To achieve high practicality and realism, we assume that the attacker can only introduce seemingly-benign external physical objects to the driving environment, e.g., off-road dumped cardboard boxes. To systematically discover such vulnerabilities, we design PlanFuzz, a novel dynamic testing approach that addresses various problem-specific design challenges. Specifically, we propose and identify planning invariants as novel testing oracles, and design new input generation to systematically enforce problemspecific constraints for attacker-introduced physical objects. We also design a novel behavioral planning vulnerability distance metric to effectively guide the discovery. We evaluate PlanFuzz on 3 planning implementations from practical open-source AD systems, and find that it can effectively discover 9 previouslyunknown semantic DoS vulnerabilities without false positives. We find all our new designs necessary, as without each design, statistically significant performance drops are generally observed. We further perform exploitation case studies using simulation and real-vehicle traces. We discuss root causes and potential fixes. 
    more » « less